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Abstract

The purpose of the present paper is to conceptually explain higher-order factor

analysis and methods for interpretation. A review of first-order factor analysis is

presented and provides the foundation for the summary of second-order factor

analysis. An example study is provided to make the discussion concrete and assist

in understanding interpretation of higher-order factor analysis. The heuristic

example involves a study of time orientation.
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The Use of Second-Order Factor Analysis

in Psychological Research

A primary purpose of scientific inquiry involves examining and summarizing

relationships between variables or groups of people under given sets of conditions

(Gorsuch, 1983). However, within the social sciences, a field of study may provide

vast amounts of information that can be overwhelming and difficult to interpret

(Cronbach, 1990). One method developed by psychologists to assist in interpreting

large amounts of data is factor analysis (Holzinger, 1941). As Gorsuch (1983)

states, "...the aim is to summarize the interrelationships among the variables in a

concise but accurate manner as an aid in conceptualization" (p. 2). Tinsley and

Tinsley (1987) describe factor analysis as,

...an analytic technique that permits the reduction of a large number of

interrelated variables to a smaller number of latent or hidden

dimensions. The goal of factor analysis is to achieve parsimony by

using the smallest number of explanatory concepts to explain the

maximum amount of common variance in a correlation matrix.

Factors, in essence, are hypothetical constructs or theories that help

interpret the consistency in a data set. The value of factor analysis,

therefore is that it provides a meaningful organizational scheme that

can be use to interpret the multitude of behaviors analyzed with the

greatest parsimony of explanatory constructs. (p. 414)
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In addition to organizing data into interpretable composites, factor analysis

is also an explanatory tool (Cronbach, 1990). Factor analytic methods are especially

useful in the development of theoretical constructs and the exploration of the

nature of structures within a field of study (Kline, 1994).

With the advent of powerful computers and availability of statistical

packages, factor analysis is used more often and in a variety of different

applications (Kline, 1994). However, as Kerlinger (1984) noted, "while ordinary

factor analysis is probably well understood, second-order factor analysis, a vitally

important part of the analysis, seems not to be widely known or understood" (p.

xivv). The purpose of the present paper is to conceptually explain higher-order

factor analysis and methods for interpretation. An example study investigating the

construct of time perspective is presented as an example of higher-order factor

analysis interpretation using program SECONDOR (Thompson, 1990).

Factor Analysis Basics

It is necessary to first understand the terms associated with factor analytic

procedures. Factor analysis is applied to matrices of association (i.e., correlation,

variance-covariance, cross-product indices). The most commonly used matrix for

factor analysis in behavioral sciences is the correlation matrix (Tinsley & Tinsley,

1987). A correlation matrix consists of correlation coefficients which are numeric

measurements of the degree of agreement between two or more variables (Kline,

1994).
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A basic assumption of factor analysis is that there are "strands" of

intercorrelated variables that have one or more factors in common. These variables

can then be represented more simply in terms of factors. Thus, the aim of factor

analysis is to explain the greatest amount of variance among factored entities with

the least number of factors. Through factor analysis a large amount of information

can be simplified into a smaller set of factors. Kerlinger (1984), describes a factor

as,

...a hypothetical entity, that is assumed to underlie..measures of all

kinds...A factor, in other words, is a latent variable...A latent variable

is an unobserved variable that presumably underlies certain observed

measures. (p. 245)

The elements represented on the factors are called structure coefficients, or

in slang, factor "loadings". Factor "loadings" represent the correlation of the

variables with the factor scores (Kline, 1994). The weights used to create the factor

scores are called pattern coefficients, and are analogous to regression beta weights.

Both coefficients are used in factor interpretation and will be examined in more

detail in a later section of this treatment.

The communality (112) is the proportion of the variable's variance explained

by the full set of factors (Tinsley & Tinsley, 1987). Some types of factor analysis

require the researcher to estimate the communality prior to factor analysis. The

type of communality estimate to be used depends on the type of analysis (i.e.,
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exploratory or confirmatory). For more detail on communality estimates, see

Tinsley and Tinsley (1987).

Factor Extraction Methods

The decision on what factor extraction method to use depends on whether the

analysis is to be descriptive or inferential, exploratory or confirmatory. In

exploratory analysis, the researcher utilizes the results to produce hypotheses for

future study. Confirmatory factor analyses are used to test existing hypotheses

regarding the nature and structure of factors. In confirmatory factor analysis the

researcher must indicate the number and the nature of the factors before the factor

extraction procedure is implemented.

Different factor analysis procedures analyze different parts of variable

variance. Variance consists of three parts: common variance, unique variance, and

error variance (Weiss, 1971). Common variance is common to more than one

variable while unique variance is variance that is distinct to a given variable. Two

common exploratory methods are principal components and principal factors. In

principal components analysis the total variance (including error variance) is

utilized when extracting factors, while in principal factors analysis only the

common variance is utilized in factor extraction.

Once the decision regarding the type of analysis to perform is made, in

exploratory factor analysis the researcher must decide on the number of factors to

interpret. There are several methods available to assist in the decision making in

exploratory analysis. One method (e.g., Bartiett, 1950) is through the use of
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statistical significance testing where it can be determined whether meaningful

covariation remains after each factor is extracted. Another method is to label a

factor a residual factor if it does not have any factor loadings that are 2-2.5 times

greater that the standard of error of the factor loadings. Other methods rely on

measures of explained variance for the last factor (i.e., the amount of variance

explained by the last factor) or the explained variance for the whole factor solution.

One of the more commonly used methods is Kaiser's criterion, which specifies

that only factors with eigenvalues of 1.0 or greater prior to rotation should be

retained. In principal components analysis an eigenvalue is the sum of the squared

factor loadings on each factor (i.e., the sum of the squared column entries). The

eigenvalue is the proportion of the variance explained by the factor (Kline, 1994).

Another method used in the decision process is Cattell's scree test where the

eigenvalues for all the factors are plotted. At the point where the curve becomes

horizontal (a scree) it is assumed that the factors are residual factors (Tinsley &

Tinsley, 1987) and those factors are not interpreted.

After determining the number of factors, the researcher must decide what

rotation procedure to use. In an unrotated factor matrix the first factor will usually

account for the majority of the variance and will be highly correlated with almost

all the variables and will be difficult to interpret, as will the remaining factors as

well. The amount of variance accounted for does not increase or decrease, at all, in

factor rotation. The purpose of rotation is to redistribute the explained variance

more evenly among the factors to facilitate interpretation (Gorsuch, 1983).

8
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Factors may or may not be correlated, depending on the type rotation chosen.

Orthogonal rotated factors are uncorrelated and tend to be easier to interpret

because they do not require "complicated explanatory hypothesis" (e.g., higher-order

factors) (Tinsley & Tinsley, 1987, p. 421). However, orthogonal factors may not be

representative of a complex reality. The varimax criterion is the most popular

method for orthogonally rotated factors. Varimax seeks to rotate the axis to

maximized variance across all the factors within the matrix (Gorsuch, 1983).

Oblique factor solutions produce factors that are correlated and present more

complicated views of reality and require a more elaborate interpretation of the

factors as well as the latent dimensions underlying the correlation among the

factors (Tinsley & Tinsley, 1987). The use of an oblique factor solution implies the

existence of higher-order factors. As Gorsuch (1983) states,

Implicit in all oblique rotations are higher-order factors. It is

recommended that these be extracted and examined so that the

investigator may gain the fullest possible understanding of the data.

(p. 255)

The most respected oblique rotation uses a promax criterion which seeks to place

the axis where the factor matrix has the best least-square fit (Gorsuch, 1983).

In oblique rotation, the factors are correlated, which means the factor

correlation matrix is not an identity matrix, I. An identity matrix is defined as a

matrix which when multiplied by another matrix (e.g., X) yields the original matrix,

X, with no changes in the entries in the original X. A matrix with ones on the

9
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diagonal and zeroes everywhere else is an Y matrix, e.g., a correlation matrix with

all factors having no correlation with each other is an I matrix.

Since the factor pattern coefficients and structure coefficients equal:

PVIF F = SVxF,

when factors are correlated, as in oblique rotation, the pattern and structure

matrices differ more as the factor correlations increase in magnitude.

This also means that in oblique rotation more parameters must be estimated

than in orthogonal rotation, since in orthogonal rotation R is not estimated, and

PVxF = SVx Since fewer parameters are estimated in orthogonal rotation, the

structure is more parsimonious, and thus all things equal in theory is more

replicable.

Higher-order Factor Analysis

The interpretation of factors requires the researcher to be creative,

imaginative, and acquainted with the data (Tinsley & Tinsley, 1987). Higher-order

factors are derived from the correlations between the lower-level factors. It is

possible to continue to derive higher-order factors until there is only one factor (a

"g" factor) or the remaining factors are uncorrelated (Gorsuch, 1983). Thompson

(1990) describes the difference between first and second-order factors as,

The first-order analysis is a close-up view that focuses on the details of

the valleys and the peaks in the mountains. The second-order analysis

is like looking at the mountains at a greater distance, and yields a

potentially different perspective on the mountains as constituents of

10
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the range. Both perspectives may be useffil in facilitating

understanding of the data. (p. 579)

Figure 1 presents an example of the hypothetical higher-order factor structure of

the WISC-III.

Insert Figure 1 About Here

When interpreting hierarchical factors, the temptation to inter*et from first-

order factors should be avoided and higher-order factors should be interpreted in

relation to the original variables. As Gorsuch (1983) stated,

To avoid basing interpretations upon interpretations of

interpretations, the relationships of the original variables to each level

of the higher-order factors are determined. Then the interpretations

are based upon relationships with variables as well as the

relationships to the primary factors; for example, a higher-order factor

may be found to have a higher relationship to a particular variable

than it does with any of the primary factors. Interpreting from the

variables should improve the theoretical understanding of the data

and produce a better identification of each higher-order factor. (p. 245)

Interpreting factors from factors increases the likelihood of making error.

Wasserman, Thompson, and Matula (1993) describe interpreting higher-order

factors from first-order factors as "...likened to interpreting shadows (second-order
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factors) made by other shadows (first-order factors) caused by real objects (the

actual variables)" (p. 9).

Another reason to interpret from the original variables is to investigate the

extent to which the original correlations can be reproduced from a knowledge of

only the higher-order factors. For example, the first order-factors may be a narrow

area of generalization. But it is possible that the original correlation matrix may

also be rep :oducible from the broader higher-order factors as well as from the first-

order factors.

Two methods have been developed to interpret hierarchical factors and "...to

avoid basing interpretations upon interpretations" (Gorsuch, 1983, p. 245). In one

procedure the first-order factors are postmultiplied by the second -order factors. The

esulting matrix, called a product matrix, is interpretable (Gorsuch, 1983). This

product matrix can then be rotated to the varimax. criterion (Thompson, 1990).

Table 1 provides an example of a rotated product matrix.

Insert Table 1 About Here

One may be able to envision this process by thinking of a microscope with

several lenses of greater and lesser magnifying power. The first-order factors "see"

the data with most powerful magnification and the greatest detail. The researcher

combines the first lens with a second lens (through a multiplicative process) and

similar to adjusting the focus, both lenses (matrices) are rotated to "bring into

focus" the original data with a new set of higher-order factors. Through this process

12
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researchers are able to examine second-order factors against the original variables

as well as the first-order factors.

The second method proposed by Schmid and Leiman (1957) takes "an oblique

factor analysis solution containing a hierarchy of higher-order factors into an

orthogonal solution which not only preserves the desired interpretation

characteristics of the oblique solution, but also discloses the hierarchical structuring

of the variables" (Schmid & Leiman, 1957, p. 53). This procedure is accomplished

by extracting the highest-order factors (or a single "g" factor). The next lower level

of factors are then residualized of all the variance contained in the higher-order

factors. As Wasserman et ai. (1993) note, "...the residualized first-order factors

show what's :eft of the first-order factors, give the presence of the second-order

factors" (p. 18).

Table 2 presents a Schmid and Leiman solution where the highest factor

solutions are listed first and the primary factors last. The first-order factor entities

are uncorrelated to the next highest level of factors (Gorsuch, 1983). This process

allows the investigator to examine the amount of variance accounted for by each

observed variable at each factor level. As Gorsuch (1983) notes,

Not only is the latter orthogonalization a possible solution, it is also a

desirable one. In science, the concern is with generalizing as far as

possible and as accurately as possible. Only when the broad and not so

broad generalities do not apply to a given situation does one move to

the narrowest, most specific level of generality. (p. 249)

13
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Insert Table 2 About Here

Example Study

As previously stated, one valuable use of factor analysis is the discovery of

the components that make up a construct. In this example study, 615 students

completed an instrument that consisted of 38 items. The instrument was designed

to measure attitudes and beliefs thought to be related to time perspective. Factor

analysis was performed using the program SECONDOR (Thompson, 1990). Figure

2 represents a possible factor structure of time perspective for such an inquiry.

Insert Figure 2 About Here

The first table provided by SECONDOR is the correlation matrix of the items

(38 items X 38 items). The prerotation eigenvalues of the correlation matrix are

also provided (Thompson, 1990). The program's default selects factors with

eigenvalues > 1.0, which resulted in 10 first-order factors. SECONDOR provides

three sets of first-order factor analysis matrices: unrotated, varimax-rotated

(orthogonal rotation), and promax-rotated (oblique rotation). The postrotation trace

and communality coefficients are provided as well (Thompson, 1990). SECONDOR

ultimately provides both a rotated unrotated product matrix (first-order matrix

times the second-order matrix) and Schmid-Leiman solution.

In the example study, first-order factor analysis produced 10 factors. For

factor interpretation both the promax-rotated pattern and structure coefficients

14
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were examined. The best description of Factor I was Delayed Gratification, which

would be a trait of future perspective. Factor II was named Risk/Sensation Seeking

and is indicative of a present orientation. Factor III could be called Not Dwelling

on the Past, which is unclear regarding time perspective. Factor IV suggests

Fatalism, that suggests a present perspective. Factor V could be called Long Term

Goals (future perspective). Factor VI suggested attitudes of Short Term Planning

(future). Factor VII could be named Commitment to Meet Obligations (part future

and past perspectives). Factor VIII could be called Focus on the Present. Factor IX

could be called Preference for the Past. Factor X could be named Hedonism, a

present perspective.

A higher-order factor analysis was conducted on the 10 factors and produced

4 second-order factors. The original first-order factor matrix (38 variables BY 10

factors) was multiplied by the orthogonally, rotated second-order factor matrix (10

first-order factors BY 4 second-order factors) to produce a product matrix (38

variables BY 4 second-order factors). To further assist in interpretation, the 38 BY

4 product matrix was again rotated to the varimax criterion.

The first second-order factor A could be called Present-Fatalistic Perspective.

The second factor could be called Future Perspective. The third second-order factor

could be named Present-Hedonism. Factor D could be called Past Perspective.

The data in Table 2 provide an example of the different perspective provided

by Schmid and Leiman's solution of "orthogonalizing" the factors. The 4 higher-

order factors are listed first followed by the 10 primary factors. As would be

15
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expected, a greater amount of the factor variance is accounted for by the second-

order factors. In the example data, second-order Factors A, C and D suggest

attitudes thought to be of a present orientation, Factor B refers to attitudes

suggestive of a future orientation.

Factor II, a first-order factor, suggests a present-oriented, Risk/Sensation

Seeking factor. The second-order Factor D while also suggestive of a present

orientation more broadly describes seeking immediate gratification and pleasure.

The first-order factor IV, suggests a focus on the present from a fatalistic view (i.e.,

useless to think ahead because life is controlled by fate). Second-order factor C, also

suggests a focus for the present but not from a fatalistic reference but from a worry-

free attitude toward the past and future.

From the examples provided the utility of Schmid and Leiman solution is

clear. The ability to examine the data from different perspectives allows

researchers to better define constructs and understand data more fully.

Conclusion

The use of higher-order factor analysis allows researchers in the behavior

sciences to examine data from different levels and perspectives. This can provide a

better understanding of the data (Gorsuch, 1983; Thompson, 1990). However, not

all researchers advocate the use of second-order factor analysis (Nunnally, 1978,

Tinsley & Tinsley, 1987). As Nunnally (1978) states,

The average psychologists has difficulty in understanding first-order

factors, and this difficulty is increased with higher-order factors....she
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or he is likely to make some misinterpretations. Also, if factor analysis

is partly founded on the principle of parsimony, it is reasonable to

question the parsimony of having different orders of factors. (pp. 431-

432)

Nunnally's feelings regarding the desire for parsimony and the potential for

misinterpretation are understandable. When available, simple results would

always be the first choice of any researcher. However, that is rarely the case. If the

goal of research is to understand and know as much of our reality as possible, then

behavior scientists must be willing to use complicated constructs. Higher-order

factor analysis can be a powerful tool in the exploration and development of

complex theories.
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Table 1

Varimax-Rotated Product Matrix and h2

Variable First-Order Solution
W h2I II III

V1 -.207 -.041 -.391 -.233 .251
V2 -.094 .534 .086 .070 .307
V3 -.610 .176 -.182 -.149 .459
V4 .132 -.183 -.605 -.044 .419
V5 -.214 492 -.279 .047 .368
V6 .049 .648 -.118 .064 .440
V7 .071 .597 .235 -.016 .417
V8 -.476 .163 -.145 -.372 .413
V9 -.123 .468 -.075 .051 .243
V10 -.089 .053 -.397 -.278 .245
V11 .106 -.164 -.268 -.501 .361
V12 .133 .030 -.136 -.377 .179
V13 -.042 .517 .101 -.180 .312
V14 -.368 .108 .004 -.454 .354
V15 -.039 .646 .042 -.132 .438
V16 -.269 .465 .072 -.133 .312
V17 .577 .060 -.055 -.263 .409
V18 .189 .321 -.024 -.220 .188
V19 -.029 -.065 -.127 -.509 .281
V20 -.071 -.020 -.550 -.315 .408
V21 .044 -.016 -.083 -.516 .276
V22 .045 .078 .166 -.535 .322
V23 -.087 .562 -.264 .007 .393
V24 -.132 .429 -.347 .023 .323
V25 .596 .301 -.341 -.019 .563
V26 .086 .381 .059 -.355 .282
V27 .067 .063 -.188 -.449 .245
V28 .034 .559 .026 .039 .316
V29 -.007 -.208 -.080 -.411 .219
V30 .163 -.025 -.361 -.390 .310
V31 -.067 .105 .013 -.332 .126
V32 .144 .639 .142 .003 .449
V33 .512 .024 .129 -.333 .390
V34 -.081 -.017 -.126 -.445 .221
V35 -.120 .526 .093 .141 .320
V36 .023 .389 -.005 -.237 .208
V37 .102 .473 .046 -.042 .238
V38 .172 .526 -.113 .164 .345

2.565 4.877 1.863 3.039 12.344

Note. Data from Thomas (1993). Bold print represents variable loadings >1.301.

20
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Figure 1

Second-Order Factor Analysis 22

Construct of Intelligence as measured by the WISC-III
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Figure 2

Hypothetical structure of Time Orientation
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